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Multifractality of Nonlinear Iterative Processes 
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Received May 29, 1997 

The Havlin-Bunde multifractal hypothesis [Physica D 38:184 (1989)] is 
expanded (in the form of the dimension-invariance approach) to nonlinear 
iterative (recursion) processes such as dielectric breakdown, phase transitions 
from periodic attractors to chaos, and cascades in turbulence. Comparison with 
model and laboratory data of different authors shows that for strong non- 
linearity the dimension invariance is broken. 

. . . . . . .  
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In ref. 1 a generalization of multifractality is suggested in the form of a 
pseudo-scaling hypothesis. In the ref. 1 this hypothesis is rigorously proved 
for linear fractals and it is strongly supported for percolation systems by 
numerical simulations. In ref. 2, I showed that this hypothesis could be 
related to the mapping m ~ m x, where m is the measure under considera- 
tion. In this note I develop a dimension-invariance approach based on this 
mapping and show that the pseudo-scaling hypothesis is applicable also to 
nonlinear iterative processes such as dielectric breakdown, phase trans- 
itions from periodic attractors to chaos in the Feigenbaum scenario, and 
critical cascades in turbulence. Moreover, comparison with model and 
laboratory data of different authors shows that for a strong nonlinearity 
the dimension invariance is broken. The main idea is based on the 
statement that there is not (in some sense) a fixed dimensionality in the 
multifractal processes, unlikethe case for monofractal ones. Therefore some 
analogy with the scale-invariance approach could be possible (recall that 
the scale-invariance approach is based on the absence, in some sense, of 
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a fixed scale in the system). Thus the multiscaling which appears in non- 
linear iterative (recursion) processes t3) could simultaneously lead to scale 
invariance and to dimension invariance (multifractality). 

1. Let us start with some standard definitions. Suppose that the total 
volume of a sample consist of a d-dimensional cube of size L. We divide 
this volume into N boxes of linear size r[N~(L/r)d]. We label each box 
by the index i and construct for each box the measure function of a field 
/a(x, t) 

mi(r) = fv p(x) dv (1) 
l 

where v i is volume of the i th box. Then the generalized dimension D q c a n  

be introduced by the following scaling relationship (see, for instance, ref. 3 
and references therein) 

N 

Zp= ~ [mi(r)]P,.~r~P-')~ (2) 
i = l  

The standard averaging is 

zN=I [mi(r)]P,~r{p-l)Dp+d (3) 
(m(r)P)  = N 

Such a description is generally useful for scale-invariant systems. One 
can use the scale-invariance approach if there is not a fixed scale in the 
system under consideration. This means the invariance of some rela- 
tionships with scale (measure) stretching, such as 

m ~ 2m (4) 

This invariance leads to the power form of laws. On the other hand, in 
multifractal systems there is not a fixed dimensionality, and then one could 
expect that dimensionless relationships are invariant with power stretching 
of the measure 

m ~ m  ~ (5) 

To use the dimension-invariance approach let us consider dimensionless 
moments 

(m p) 
F.p = (m,)p/---------~, (6) 
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If there exists a pseudo-scaling relationship between the dimensionless 
moments t2) 

Fnp ~ (Fnq) p(n' P" q) (7) 

then it is easy to show that the dimension invariance leads to the 
relationship 

p(;m, 2p, 2q)= p(n, p, q) (8) 

On the other hand, this. condition leads to a reduction of the number of 
independent variables from three to two, which can be written in the form 

P(n, p, q)= f (P, q)  (9) 

where f (x ,  y) is some function. 
It is clear that the pseudo-scaling (7) always exists for systems with 

ordinary scaling (3). If we denote 

D q (q -  1) + d = qfl(q) (10) 

then it follows from (3), (7), (9), and ( 1 O) that 

fl ( p ) -- fl ( n ) _ q /___n_n f (p q)  (11) 
fl(q) - fl(n) pin ' 

This functional equation for fl(p) has two solutions: 

fl(p) = a + bp y (12) 

and 

fl(p) =a + b In p (13) 

where a, b, and y are some constants. 
The first solution, (12), is related to the original Havlin-Bunde 

hypothesis, t~) The second solution, (13), .is an additional dimension- 
invariant form of the scaling exponents and we shall study just this form 
in more detail below. 12' 4 

2. It should be noted that appearance of the topological dimension 
d in (10) is in contradiction with the main idea of the dimension-invariance 
approach. Generally speaking, this approach should not be applicable even 
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in some vicinity of the capacity dimension Do. To solve this "paradox," let 
us introduce an effective averaging 

~_,i N , [ m i ( r ) ]  p 
"-- = ,-..Jr ( p -  l) op+  Oef (14) (m(r) p ) ~f- 

N,f 

instead of the standard averaging (3), where Nef=(Z/r) ~ and Def is some 
effective dimension. This effective (virtual) dimension should be obtained in 
a self-consistent way from the dimension-invariance approach itself, and it 
has no simple geometrical meaning. Then, using the effective averaging (14) 
instead of (3), we obtain for the dimension-invariance approach 

Dq(q - 1 ) + Oef= qfl(q) (15) 

with fl(q) given by (12) or (13); and q = 0  is a singular point of this 
approach. 

Analogously, the dimension-invariance approach should not be 
applicable for large values of [q[, where other fixed dimensions, D o~ and 
D_o~, could be relevant. The situation is quite analogous to the situation 
with scale invariance. The scale-invariance approach is applicable in some 
interval of scales L > r > l, where L and l are some fixed outer and inner 
scales of the system. 

If points [q[ = 1 belong to the interval of the region of applicability of 
the dimension-invariance approach, we obtain from (15) and (13) 

Dq=D t +b qln [q[ 
- ( q - l )  

Since point q = 0 is a singular point of the approach, 

q In Iql 
Dq=D_ l +b+ ( q _  1) ( b  + < 0  for q>O) (16a) 

Dq=D ~ +b qln Iql (b > 0  f o r q < 0 )  (16b) 
- - ( q - l )  - 

This representation could be applicable even for the situation where the 
point q = 1 does not belong to the region of applicability of the dimension- 
invariance approach due tO elimination of D q from relationship (15) at 
q = l .  

3. Let us demonstrate the applicability of this approach. In ref. 5 
deterministic fractal models of dielectric breakdown are presented and the 
recursion relations of the electric field on the growth bond are obtained. 
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Fig. 1. A Spectrum of generalized dimension D q (adapted from ref. 5) for the dielectric 
breakdown model with z - 2. The straight lines are drawn for comparison with the dimension- 
invariant representation (16). 

The growth probability P i at the growing perimeter bond i is given by 
Pi ~(Ei)-', where E~ is the local electric field at the growth bond. The 
generalized dimensions D q are calculated in ref. 5 (see also ref. 6) to 
describe the growth probability, by using the recursion relations. Figure 1 
(adapted from ref. 5) shows the set of Dq against q In [ q [ / ( q -  1) for z = 2. 
Straight lines are drawn in Fig. 1 for comparison with the dimension- 
invariance relationship (16) (upper set of symbols corresponds to q <0  and 
lower set corresponds to q > 0). One can see good agreement between these 
data and the dimension-invariance approach. For z = 4, however, there is 
disagreement between the dimension-invariance approach and the D q 

calculated in ref. 5. This could be an indication that for strong nonlinearity 
the dimension invariance is broken (see also additional evidence of this 
phenomenon below). 

Phase transitions from periodic attractors to chaos in the Feigenbaum 
scenario also exhibit dimension invariance. Calculated in ref. 7 were the 
generalized dimensions D q for critical strange sets which refer to the 
Feigenbaum-type attractors formed at critical points of transitions to 
chaos in 1D iterative system. (s) Fig. 2 (adapted from ref. 7 shows these 
generalized dimensions calculated for the map f ( x ) =  1 - a  ]x]: for z=2 .  
Again one can see good agreement between the data and the dimension- 
invariance representation (16) (note that D q in this case is normalized on 
Do; ref. 7). Increasing nonlinearity leads to violation of the dimension 
invariance for this process as well. Indeed, calculation performed in ref. 7 
for z = 3 gives a set of generalized dimensions which does not exhibit the 
dimension-invariance properties (cf. previous case). 

Another interesting example of a nonlinear iterative process with 
the nonlinearity index z = 2 is given by critical formation of cascading 
turbulence (see, for instance, refs. 3, 9, 10, and references therein). 
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Fig. 2. A spectrum of generalized dimension Dq (normalized on Do, adapted from ref. 7) for 
the critical strange sets which hereafter refer to Feigenbaum-type attractors formed on the 
critical points of the transition to chaos (z = 2). The straight lines are drawn for comparison 
with the dimension-invariant representation (16). 

Figure 3 shows (averaged)  exper imenta l  da ta  ob ta ined  in a tmospher ic  
b o u n d a r y  layers, in a l abora to ry  tu rbu len t  b o u n d a r y  layer, in the turbulent  
wake of  a circular cylinder, and  in a tu rbulen t  flow behind  a square  grid 
of  round  bars  ( the da ta  taken  f rom ref. 3 and  based on exper iments  t~' ~2~). 
We do not  show the da ta  be longing to a vicinity of  the point  q = 0, where 
the d imension- invar iance  a p p r o a c h  becomes  nonappl icable .  Again one can 
see good  agreement  with the d imension- invar iance  representa t ion  (16) 
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Fig. 3. A spectrum of (averaged) generalized dimension D q of turbulent energy dissipation 
obtained in different turbulent flows (data taken from refs. 3, 1 l, and 12). The straight lines 
are drawn for comparison with the dimension-invariant representation (16) [the point with 
(q In [q[ )/(q - I ) - 0 corresponds to D_ l]. 
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(cf. Figs. 1 and 2). In this case (unlike previous ones) the index of non- 
linearity, z = 2 ,  cannot be varied. However, there are many analogous 
stochastic processes where the case z > 2 could be studied and it seems to 
be a rather intriguing problem whether this value of the nonlinear index is 
a critical one for the applicability of the dimension-invariance approach. 
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